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Abstract 
Measuring amplitude and phase of continuous ultrasonic waves with a lock-in amplifier is shown to give equally 
sensitive indicators of concrete damage as pulsed coda wave analysis, but maintains its sensitivity at considerably 
much lower signal levels. Continuous and pulsed measurements were performed on a concrete slab subjected to 
cyclically increased damage levels. In the unloaded phase each measurement type was performed at varying transmit 
signal levels. The result indicates the possibility of using a larger distance between transducers in high frequency health 
monitoring systems of concrete structures, where attenuation of propagating waves is strong.  
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1. Introduction  
 
There is an increasing demand on the reliability and safety of civil structures as these are growing 
in numbers and getting older. In general, early warnings of degradation or damage is desired, 
without invasive test procedures. For this reason much effort has been put into developing the field 
of non-destructive testing (NDT).  
Structural health monitoring (SHM) can be regarded as a continuous version of more traditional 
NDT; a structure is permanently equipped with transducers which continuously, or regularly, 
perform measurements which give an indication as to its health status. Benefits of SHM systems, 
which differentiate it from traditional NDT, include the facts that no operators are necessary on 
site, inaccessible locations can be monitored and measurements can be taken very often, which in 
turn enables the detection of sudden events in the structure. An SHM system can monitor a structure 
for its entire lifecycle and each measurement is compared to a baseline [1].  
Ultrasonic waves, with a variety of methods, have been successfully used in NDT of concrete 
structures [2], [3]. Methods based on guided-waves commonly involve only analysis of the direct 
propagating wave, and thus only investigate the direct path between two sensors. This is not 
optimal in SHM of large civil structures where it is necessary to monitor as large a volume as 
possible, with the fixed sensor locations. One method which addresses this issue is to transmit a 
signal and measure the diffuse field created by boundary reflections and waves scattered by the 
heterogeneities in the concrete. By analyzing these trailing parts of the measured signal (coda 
waves), a larger volume is probed. Although it is, by definition, not possible to attribute features in 
the diffuse signal to any one specific bulk or guided wave mode, it has been shown that they are 
very sensitive to material changes [4]–[7]. This sensitivity can be attributed to the fact that the 
trailing parts of the measured signal correspond to waves which have traversed a relatively large 
volume and has thus been more affected by damage in the material than the parts corresponding to 
the direct propagation path. 
A major challenge in using the diffuse field is its sensitivity to changes in transducer location and 
coupling conditions between measurements. This issue is largely circumvented in SHM since the 
transducers are permanently fixed. Piezoceramic transducers (PZT) are commonly used, either 
embedded into the concrete or mounted on the surface. These are used both as transmitters and 
receivers of the mechanical waves and thus provide an efficient solution for SHM applications. In 
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contrast, hammer impact hits, although generating strong pulses which can travel relatively far, are 
not suitable for SHM applications since they are not perfectly reproducible and cannot be used for 
reciprocal transmission and reception. 
The implementation of coda wave analysis in both NDT and SHM applications and the ability of 
the method to detect early onsets of cracking in concrete have been extensively investigated [8]–
[12]. There exist different methods for analyzing coda waves, including the doublet method [5]–
[7] and the stretching method [4], [13], [14] among which the latter of these has been shown to be 
more precise and more stable towards noise [15]. One issue with coda wave analysis, and guided 
waves in general, in civil structures is the fact that the attenuation of mechanical waves is 
substantial in concrete. This makes covering large areas difficult as the transducers have to be 
placed at close distance. For this reason, the prospect of being able to detect weaker signals, and 
thus increase transmission range, is appealing. 
 
One method of achieving this is to use single frequency tones as excitation, as opposed to transient 
bursts. If a single frequency is transmitted continuously a steady-state diffuse field will stabilize 
after a short period of time, consisting of direct propagation, reflections in boundaries and scattered 
waves. The signal measured at any receiver location will then be a superposition of all different 
propagation paths between actuator and receiver. This removes any temporal information in the 
measured signal, which impedes spatial resolution. However, an advantage is the increase in energy 
of the scattered and reflected waves, which otherwise rapidly attenuate below the noise floor. 
Furthermore, continuous signals can be detected at low amplitudes, even well below the noise floor. 
This gives potential to increase the distance between transducers and thus enabling monitoring of 
larger structures.  
In published work by Yan et al. [16], Liao et al. [17] and Song et al. [18] continuous waves were 
used in SHM of concrete beams subjected to damage. The frequency of the continuous transmission 
was swept over an interval and the energy at different frequency bands was calculated using 
wavelet package decomposition. Damage to the concrete was correlated with a decrease in energy. 
 
Although studies exist where continuous transmission have been used for SHM purposes, to the 
authors’ knowledge, there is no comprehensive comparison of pulsed and continuous transmission 
for SHM applications. The presented study therefore investigates the use of straightforward 
amplitude and phase measurements from single-frequency continuous acoustic transmissions as 
indicators of damage and compares the sensitivity to pulsed coda wave analysis. The measurements 
of the continuous signals were performed with a lock-in amplifier, which is known to be able to 
detect very low signal levels. In order to simulate increased transducer distance, the amplitudes of 
the transmitted signals were gradually reduced. 
 
2. Materials and equipment 
 
2.1 Concrete sample 
 
The tests were conducted on a concrete slab with dimensions 1.2 x 0.8 x 0.15 m and a water-
cement-ratio of 0.45. The material composition of the concrete is given in Table 1. The slab was 
reinforced with a steel mesh (nominal diameter = 6 mm) in the tension face, with 6 reinforcement 
bars in the direction of the strain and 7 perpendicular. Figure 1 shows the layout of the 
reinforcement. The slab was cured for 31 days before the testing. 
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Table 1. Composition of concrete. 

Components Values (kg/m3) 
Cement 400 
Fine aggregate (0-8 mm) 890 
Course aggregate (8-11 mm) 445 
Course aggregate (11-16 mm) 445 
Water 180 
Superplasticizer (Sikament EVO 26) 0.83 

 

 
Figure 1. Concrete dimensions, reinforcement layout and transducer locations. Concrete slab seen from the side (a) 

and from above (b). 
 

2.2 Ultrasonic transducers 
 
Piezo ceramic discs (Ferroperm Pz 27) with diameter 38 mm and thickness 10 mm were used as 
ultrasonic transducers. The discs were glued to 25-mm-high aluminum cylinders. BNC connectors 
were installed into threaded holes in the cylinders and connected to either pole of the ceramic discs. 
The transducers, PZT disc and aluminum cylinder combined, have a major resonant frequency at 
47 kHz.  
 
2.3 Pulsed transmission 
 
For the transient measurements, an Agilent 33500B Waveform Generator was used to output a 5-
cycle, Hanning-windowed, sinusoidal pulse with a center frequency of 47 kHz as excitation of the 
transmitter. The signals measured by the receiver were put through a Krohn-Hite 3905B 
Multichannel Filter set to high-pass, with a 5 kHz cut-off frequency, and a gain of 20 dB. The 
filtered and amplified signal was sampled with an Agilent InfiniiVision DSO-X 3014A 
oscilloscope.  
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2.4 Continuous transmission 
 
For the continuous measurements, the transmitter was excited by a continuous sinusoidal wave of 
frequency 47 kHz, generated by the 33500B waveform generator. The signal was left on for 300 
ms before any measurements were made, providing sufficient time for the development of a steady 
state. 
The signals from the receiving transducer were put through the Krohn-Hite filter, with the same 
settings as for the pulse transmissions, and sampled with a Signal Recovery 7210 Multi-channel 
Lock-In Amplifier. The lock-in amplifier outputs the amplitude of the measured signal and its 
phase, relative to the driver signal (provided by the signal generator).  
 
3. Acoustical measurements 
 
3.1 Measurement procedure 
 
The concrete slab was instrumented with the two PZT transducers on the tension face, 700 mm 
apart and centered on the slab. The transducer to the right of the center acted as actuator and the 
one to the left as receiver. The transducer locations are displayed in Figure 1. 
The slab was placed with supports 100 mm from the edges. Using a hydraulic testing machine, the 
load was applied as a line along the width of the slab so as to create cracks centered between 
transmitter and receiver. The loading protocol used was to apply an increasing load in steps, release 
the load between steps and then perform the acoustic measurements. Thus, the measurements were 
performed on an unloaded slab and developed cracks were, at least partially, closed. Each load 
level was chosen to be 2 kN greater than the previous one. A load cell in the testing machine 
measured the applied load and two displacement transducers measured the deflection of the slab.   
After the release of each load step, both transient and continuous transmission acoustic 
measurements were performed at different voltage levels of the driving signal, ranging from 10 V 
to 1 mV. This was made in order to simulate an increased distance between the transducers, by 
decreasing signal-to-noise ratio, and investigate the lower limit for where the two methods can 
detect damage. At each voltage level, 20 pulsed and 5 continuous transmission measurements were 
performed in order to enable averaging and statistics. 
The choice of 47 kHz signals gives a surface wave wavelength of ~4 cm, which is slightly larger 
than the largest aggregates in the concrete. The coda thus consists of some scattered waves, but 
mostly of reflections in the boundaries. The number of reflections, and their amplitude at the 
receiver position, depend on the geometry of the concrete slab. With the specimen dimensions and 
transducer placement used in the presented study, many reflections in the boundaries were 
measured with the same order of magnitude as the direct propagation wave. 
 
3.2 Data processing 
 
For both modes of transmission, damage was estimated by analyzing attenuation and velocity 
change as the concrete slab is damaged. For the pulsed transmission, this was done by calculating 
the energy dissipation and the stretching method [4], [13], [14]. Before evaluation of damage the 
measured pulses were averaged over the 20 samples and passed through a digital 5-pole 
Butterworth band-pass filter with cut-off frequencies at 30 and 70 kHz in order to suppress noise. 
In the frequency range of interest, the noise was approximately white. 
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For the energy dissipation evaluations, the energy content of each measured waveform was 
calculated with 
 � =∑[ͳʹ ሺ�� + ��+ଵሻ]ଶ ∙ �ݐ∆

�=ଵ  

 
where Ak is the amplitude of the signal at sample k, Δt is the time step and N is the number of 
samples. The energy measured for pulses transmitted through the undamaged sample was used as 
baseline. The dissipated energy for each state of damage was defined as the ratio between the 
current pulse energy and the baseline energy. 
 
The stretching method was used to estimate the variation of velocity between two diffuse 
ultrasonic pulse signals. The baseline coda signal was interpolated at times t(1+α) in a time 
window [t1 t2]. This corresponds to a stretching or compression of the reference signal which was 
then compared to the measurement signal from the possibly damaged structure by computing the 
correlation coefficient: 
 ��ሺ��ሻ = ∫ ሺͳݐ)ݑ + ��ሻ)ݑௗሺݐሻ�ݐ௧మ௧భ√∫ ሺͳݐ)ଶݑ + ��ሻ)�ݐ ∫ ௧మ௧భ௧మ௧భݐ�ሻݐௗଶሺݑ  

 
Where ur and ud are the reference signal and the signal from the damaged structure respectively 
and αi are different stretching factors. The α that maximizes the correlation coefficient is equal to 
the relative modification of the propagation velocity.  
 
For each continuous measurement, only two scalar values were acquired; amplitude and phase, 
relative to the exciting signal. Attenuation was evaluated as the ratio between each measured 
amplitude and that of the baseline signal. Changes in phase give an indication of change in 
velocity in the medium. Since the measured phase is that of the scattered wave field the velocity 
change is an average of all propagation paths between the transducers.  
 
Measurements were performed at different levels of transmission signal amplitude. The signal-to-
noise ratio (SNR) was evaluated at each transmission level according to ܵ�ܴ = ͳͲ ∙ ���ଵ ( �௦����௦)ଶ 
where Asig is the amplitude of the highest peak in the pulse, measured on the undamaged concrete 
slab and Anoise is the root-mean-square of the white noise in the measured signal, after band-pass 
filtering. 
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4. Results and discussion 
 
In order to induce damage in the material, the concrete slab was loaded and unloaded according 
to the cyclic loading procedure. The applied load was increased until the reinforcement bars 
yielded. After this, an applied load could not be maintained at a constant level. 
Figure 2 shows the response of the beam during the loading procedure. The reinforcement bars 
yielded at ~57 kN load. Cracks were only visible on the surface of the concrete just before 
yielding of the reinforcement bars. After unloading of each load step, both continuous and pulse 
measurements were performed.  
 

 
Figure 2. Response of the concrete to the loading procedure. The reinforcement bars yielded at ~57 kN load. 

Acoustical measurements were performed while the slab was not loaded. 
 
4.1 Amplitude/Energy measurements 
 
After each unloading of the concrete slab, new acoustical measurements were performed, and the 
amplitude of the continuous signals and the energy content of the pulses were measured. These are 
shown in figure 3 as a function of the concrete deflection during the preceding load step. The values 
are normalized with regard to the first measured energy/amplitude. Each figure part shows the 
amplitude and energy ratio for decreasing transmission signal levels. The uppermost left sub-figure 
shows data from measurements with a high signal-to-noise ratio. It can clearly be seen that the 
transmitted signal is increasingly attenuated as the concrete is loaded. The continuous and pulse 
transmissions show very similar sensitivity to the damage.  
However, as the transmission signal level is decreased the pulse measurements become less 
coherent, and show little or no relation to the level of damage in the concrete. It is clear that the 
pulse is simply not measurable below the noise, even after averaging and filtering. The continuous 
signal data, however, measured by the lock-in amplifier, maintains its sensitivity to changes in the 
concrete even for extremely low signal levels; only for the lowest SNR is there some variance in 
the data at each load level. The results indicate that the continuous transmission display the same 
sensitivity as pulsed transmission, but is functional at lower signal levels. 
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Figure 3. Amplitude measurements from continuous measurements and energy measurements from pulse 

measurements as a function of deflection of the concrete slab. The amplitude and energy are normalized relative the 
baseline measurement. The horizontal axis of each subplot corresponds to the deflection of the concrete slab during 
the preceding load step. Each consecutive subplot shows measurements for decreasing signal-to-noise (SNR) ratio. 

The dotted, vertical line correspond to the deflection of the last load step before yielding. 
 
4.2 Relative velocity/Phase measurements 
 
The relative velocity change of the pulses were computed using the stretching method in order to 
provide an indication of damage. In order to compare the sensitivity of the time-stretch 
measurements for pulse transmission and the phase measurements for the continuous transmission, 
both data sets were normalized to the minimum value in the set of measurements before yielding 
of the reinforcement bars. These normalized relative values are shown in figure 4, as a function of 
previous deflection of the slab. Each subsequent figure part displays similar measurements with 
decreasing signal-to-noise ratio. 
As can be seen in figure 4, for the transmissions with high signal-to-noise ratio, the velocity and 
phase measurements display very similar sensitivity to damage, with a clear relation to the 
previously experienced deflection of the concrete slab. It should be noted that, after yielding of the 
reinforcements bars, the pulse measurements do not correlate to the baseline signal and the absolute 
values of these data are meaningless. These values are therefore not shown in the figure. 
Similarly as for the attenuation measurements, in figure 3, it is clear from figure 4 that for very low 
SNR the pulse measurements cannot distinguish between the pristine and damaged concrete due to 
the signal being buried under the noise. The phase measurement maintains it sensitivity even at 
extremely low signal levels. 
 

International Symposium 
Non-Destructive Testing in Civil Engineering (NDT-CE) 

 
September  15 - 17, 2015, Berlin, Germany



 
Figure 4. Phase measurements from continuous measurements and relative velocity change measurements from pulse 
measurements as a function of deflection of the concrete slab. The phase and velocity change are normalized relative 
the minimum value of the set of measurements before the yielding of the reinforcement bars. The horizontal axis of 

each subplot corresponds to the deflection of the concrete slab during the preceding load step. Each consecutive 
subplot shows measurements for decreasing signal-to-noise (SNR) ratio. The dotted, vertical line correspond to the 

deflection of the last load step before yielding. 
 
 
The results show that both amplitude and phase measurement of continuous waves give indications 
of damage equal to similar measurements with pulse transmission, with the added benefit of being 
able to detect much weaker signals. The pulse transmissions lose their sensitivity to damage when 
the measured signal is the same order of magnitude as the noise, while the continuous 
measurements maintain their sensitivity even at a SNR of ~-40 dB, and possibly lower. The 
presented pulse measurements are averaged with 20 samples. Theoretically, SNR increases with 
the square-root of the number of samples, provided that the noise is truly white and the channel is 
stable. This means that the pulse measurements would need to be averaged 10000 times in order to 
maintain sensitivity at -40 dB SNR. 
The phase measurements give slightly earlier warning than the amplitude measurements, but both 
values are obtained simultaneously from the lock-in amplifier which means it is very little effort to 
design an SHM application which makes use of both parameters. The time-stretching method is 
computationally intensive as each measurement is correlated to many stretched baseline signals. In 
contrast, the phase measurements are read from the lock-in amplifier in almost real-time.  
 
The results from the study indicate the usefulness of the measurement method for the specific 
concrete slab, with given dimensions and damage. However, an advantage with using multiple 
scattered waveforms is that increasing complexity in the geometry of the test object does not 
impede the measurements; more boundaries simply increase the diffusivity of the waveform. It 
should be noted that decreasing the transmission signal amplitude should be considered a rough 
approximation of increasing the distance between the transducers; in this experiment the geometry, 
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and thus possible propagation paths, remain the same for the different simulated transducer 
distances. This is generally not the case for real life structures.  
 
If continuous measurements are used, it is of great importance to establish that no parasitic 
electrical coupling exist between the transducers as this might hide the mechanical signal. This is 
less of an issue in pulse transmission, as transmission and reception is separated in time. In the 
presented study, this was done by observing that no signal was measured with the same 
experimental set-up, but with the transducers without contact with the concrete. Also, the fact that 
the measured signal clearly shows almost identical correlation to damage level in the concrete, as 
the pulsed measurements, greatly indicates that the coupling is mechanical.  
 
The methodology demonstrated in this paper could make higher frequency signals practical in 
health monitoring of even large concrete structures. In this study was used signals with frequencies 
of ~50 kHz which yields wavelengths of several centimeters. In order to detect smaller damage 
higher frequencies are typically used. For SHM purposes, however, this has not been practical due 
to the high attenuation in concrete. The measurement procedure can easily be expanded to use 
signals with swept frequency. By sweeping across a suitable frequency range pulse measurements 
can be recreated with inverse Fourier transformation. Sweeps which include lower frequency 
regions can utilize structural modes to possibly extend operational range further. 

 
5. Conclusions 
 
Amplitude and phase measurements of continuous, single-frequency ultrasonic signals as 
indicators of damage in a reinforced concrete slab have been evaluated. The measurements have 
been benchmarked to energy and velocity measurements of ultrasonic pulse measurements, with a 
central frequency the same as the continuous signal. 
It has been shown that the continuous-signal measurements and pulse measurements display 
remarkably similar sensitivity to damage, both with regard to attenuation and velocity changes. 
Furthermore it has been demonstrated that continuous measurements, with a lock-in amplifier, can 
easily be performed at much lower signal levels than for transient measurements, while maintaining 
the sensitivity to damage in the concrete. This suggests that it is possible to increase the transducer 
distance, or increase frequency, in SHM applications. This would be very beneficial in the 
monitoring of civil structures, as these can be very large and because the attenuation of mechanical 
waves is great in concrete. 
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