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A B S T R A C T

Ultrasound imaging for Non Destructive Testing is frequently performed in an immersion setup, where water
is used as coupling medium between the probe and the component under test. For the computation of the time
delays needed for beam-forming, the shape of the component surface and probe location and orientation (PLO)
must be known. In this work we develop methods for the automatic detection of the surface and the estimation
of PLO for 2D array probes. In particular, the methods developed apply to three types of elementary surfaces
which are usually found in industrial and structural components: planes, cylinders and spheres. The methods
use the measured surface echoes Time of Flight (TOF) to fit parametric models based on ray propagation
and reflection on the surface, giving the coordinates and Euler angles that define the PLO relative to the
component under test. Validation experiments with four test specimens representing the three types of surfaces
are presented . The accuracy and precision of estimated PLO coordinates and angles are analyzed, and a Total
Focusing Method (TFM) imaging example is shown achieving a correct detection of artificial defects in the
component for a different PLOs.

1. Introduction

Ultrasound transducer arrays have become a fundamental tool in
Non Destructive Testing (NDT) [1,2] with a broad range of applications
from welding inspection to composite structures. The most frequently
used type of probes are linear arrays, composed of elongated elements
in a linear arrangement, which enable beam focusing and steering
inside a plane. This limitation can be overcome using 2D arrays [3].
In this type of probes the transducer elements are distributed on a 2D
region, enabling beam steering and focusing in all spatial directions [4,
5]. The present work is about the use of 2D arrays in immersion testing
configurations.

Immersion testing is widely used in NDT as coupling technique
when rigid wedges are difficult or impossible to use, as in the case
of components with curvature changes or when contact coupling can-
not be guaranteed throughout the inspection because of mechanical
constrains. In order to compute the ray paths needed for imaging
algorithms, the probe location and orientation (PLO) relative to the
component under test must be known. Additionally, the surface shape
must be also known. This information defines the geometry needed
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for the two-point ray tracing [6] between each array element and
each image point. In this work we address the problem of estimating
the PLO of the probe using the surface reflection echoes for some
primitive shapes: plane, cylindrical and spherical surfaces. These shapes
are representative of some common inspection cases like tubes, rods
and laminates, and can be used to locally describe the shape of more
complex geometries, like carbon fiber stringers in aerospace industry
or pipe elbows in energy or petrochemical fields.

The problem of ultrasound surface estimation for imaging through
a coupling medium (usually water in the immersion testing case) was
tackled by many authors for the case of linear arrays. The developed
methods use different types of acquisitions and different signal pro-
cessing algorithms, which can be divided in two main classes. In one
case the time of flight (TOF) of the surface echoes is first extracted
from the signals and the surface points are computed with those TOFs.
This approach is used in Refs. [7–10] with pulse–echo and pitch–catch
acquisitions. In [11] this approach is also followed, further proposing
a method using plane wave acquisition.

https://doi.org/10.1016/j.ndteint.2023.102990
Received 2 September 2023; Received in revised form 31 October 2023; Accepted 4 November 2023

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rti

cl
e:

ht
tp

s:
//w

w
w

.n
dt

.n
et

/?
id

=3
03

95



NDT and E International 141 (2024) 102990

2

G. Cosarinsky et al.

The second class of algorithms is imaging based: by using Full
Matrix Capture (FMC) and the Total Focusing Method (TFM) [12], an
image of the first propagation medium is formed by using rectilinear
ray paths. In this image the component surface appears as a narrow
region of high intensity, which is used to reconstruct the surface geom-
etry. In [8] the authors compare a TFM-based method with TOF-based
methods, concluding that TFM method is more accurate but slower.
In fact, it requires the processing of all signals instead of just a set of
TOFs. In [9] a different imaging based algorithm is proposed, which
does not need the formation of entire images. It also proposes a TOF-
based method and compare both to the pitch–catch method proposed
in [11], concluding that the three methods were almost equivalent in
accuracy, being pitch–catch the fastest one.

A TFM-based surface extraction method is also presented in [13]
along with a form of Synthetic Aperture Focusing Technique (SAFT)
alternative. This work applies these methods to the scanning of bony
surfaces for robotic knee arthroplasty, achieving average errors of about
0.8 mm. Another work using TFM for surface extraction is [14], in
which the authors analyze in depth how estimation errors increase in
zones where the surface normal forms a high angles with the probe face
normal. They report less than 1 mm errors in the ‘‘low’’ slope zones, but
larger than 1 mm in steeper zones.

The methods developed in the aforementioned works only apply to
2D geometries. They are used to estimate a curve which is the surface
cross section. For them to work properly, the surface normal must be
contained in the array imaging plane. If not, waves reflected on the
surface would be directed out of plane, resulting in insufficient acoustic
energy being received and incorrect focusing delays.

In practical situations, the problem of ensuring the perpendicularity
of the array plane with the component surface during the whole scan,
makes mechanical design much more complex. Moreover, it usually
limits the inspection speed and restricts the kind of parts that can be
evaluated with a given automated machine. Finally, if the component
under test presents a doubly curved and non-developable surface, the
inspection with a linear array cannot warranty the best possible image.

A solution to this problem is using 2D arrays, which can detect
the surface and apply correct focal laws in any spatial direction. Nev-
ertheless, few works have been presented so far about the problem
of automatic surface and probe location detection and focusing with
these devices in NDT. In [15] a TFM-based surface extraction method
is proposed for 2D arrays, and a TOF-based pulse–echo method was
proposed by our group in [16].

All the approaches reported above estimate a set of surfaces points
representing a local patch, and they can be applied to arbitrary shaped
surfaces. In this work we propose a method for parametric estimation,
which can be considered as an inverse problem [17]. A solution is
given for some elementary shapes often found in mechanical and
structural components, and for which the forward problem (computa-
tion of surface echoes TOF) can be solved with closed formulae. The
corresponding models are derived in Section 2. In Section 3 validation
experiments are presented and the results are discussed in Section 4.

2. Methods

The setup we are going to analyze is composed of a probe immersed
in a homogeneous propagation medium (medium 1) with propagation
speed 𝜔1, and a test component in the same medium with a boundary
surface 𝜀.

The probe is an array of N transducer elements distributed on a
plane region F (the probe active face or aperture) (Fig. 1.a). The ele-
ments in a 2-dimensional (2D) array like this might also be distributed
on a curved surface [18], but in this work only the flat case will be
considered. As shown in Fig. 1 a Probe Coordinate System (PCS) with
Cartesian axes (𝜗, 𝜛,𝜚) is attached to the probe face, such the array face
is on the plane (𝜗, 𝜛). The origin of coordinates is a point 𝜍𝜑 on the array
face, which we will call the probe face center.

The probe transmits a wave that reflects on the surface 𝜀 and the
array elements receive the echoes recorded on A-scans 𝛻(𝜕, ℵ) where 𝜕 is
the element index and ℵ is time. For each A-scan there will be a strong
echo from the surface (which we are going to suppose originated at
a specular reflection point) arriving at a time ℵ𝜀 (𝜕). The hypothesis of
specular reflection restricts the analysis to smooth surfaces compared to
the wavelength. The arrival times might be estimated from the signals
by different methods [19,20], being threshold crossing the simplest
one, which we are going to use for our experiments in Section 3.

Two types of emitted waves will be considered: single element
emission and plane wave emission. In the single element emission, the
wave is idealized as a spherical wave radiated from a point source in the
element center. This is a good approximation as long as the element size
has similar dimensions as the wavelength, and the reflecting surface is
in the far field. With this two types of emitted waves, time of flight
(TOF) is easily computed to any field point.

The objective of this section is to derive equations to estimate
probe location an orientation (PLO) relative to 𝜀, given the element
distribution and the set of arrival times of the surface echoes. The
element distribution is defined by the position of elements center points
ℶ(𝜕), which can be described by the coordinates (𝜗(𝜕), 𝜛(𝜕)) in the PCS
of the vectors 𝜍𝜑ℶ. In the case of the so-called matrix arrays 2, like
those used in this work’s experiments, the elements are arranged in a
rectangular grid, and so the natural way to index them is using two
indexes (𝜕, ℷ). The element coordinates in the PCS are, therefore:

⌋

⌈

⌈

⌉

⌈

⌈

{

𝜗(𝜕) =
}

𝜕 ε
ℸ𝜗 ε 1

2

⦃

⊳𝜗

𝜛(ℷ) =
}

ℷ ε
ℸ𝜛 ε 1

2

⦃

⊳𝜛

(1)

Where (ℸ𝜗,ℸ𝜛), (⊳𝜗, ⊳𝜛) are the number of elements and pitches in each
direction Fig. 2.b. The coordinate origin 𝜍𝜑 is chosen in the geometrical
center of the probe face, and the index intervals are 𝜕 ϑ [0,ℸ𝜗 ε 1] and
ℷ ϑ [0,ℸ𝜛 ε 1].

The shape of S and the PLO relative to S are defined in a World
Coordinate System (WCS) with Cartesian axes (⊲, 0, 1) and origin in a
point 𝜍2 (Fig. 1.a). PLO can be defined by the position vector 𝜍2 𝜍𝜑
of probe face center (point 𝜍𝜑 ), and a rotation matrix 345ℵ relating
PCS and WCS. This rotation can be parametrized using three angles
6 = (7⊲, 70, 71), the so-called Euler angles [21]. Thus, 6 numbers are
needed to define probe location and orientation. The position vector of
an array element E (using for simplicity the same symbol to denote the
element and its center point) can thus be expressed in the WCS as:

⦄

⦄

⦄

𝜍2 ℶ⦄⦄
⦄2

=
⟨

⟩

⟩

⟪

ℶ⊲
ℶ0
ℶ1

⟫

❲

❲

❳

= ⦄

⦄

⦄

𝜍2 𝜍𝜑
⦄

⦄

⦄2
+345ℵ

⟨

⟩

⟩

⟪

𝜗
𝜛
0

⟫

❲

❲

❳

(2)

where we use the notation / /2 for coordinates in WCS, and we denote
by (ℶ⊲,ℶ0,ℶ1) the coordinates of E. Let us suppose we know a function
8 (the model) such that:

ℵ𝜀 (𝜕) = 8(𝜕,𝜍𝜑 ,6,9) (3)

where 9 are a set of parameters that define the surface geometry in
WCS and ℵ𝜀 (𝜕) the theoretical two-way time-of-flight from element 𝜕 to
the surface point with specular reflection. . Then if the measured times
of arrival are ℵω𝜀 (𝜕), least squares fitting [17] of the model parameters
can be done by minimization of the cost function:

.5,ℵ(𝜕,𝜍𝜑 ,6,9) =
ℸε1
\

𝜕=0

(

𝜚(𝜕)
(

ℵω𝜀 (𝜕) ε ℵ𝜀 (𝜕)
))2 (4)

where 𝜚(𝜕) are weights that could be chosen as 1 for every element
or computed by some criteria related with the quality or uncertainty
of the measurement (more on this in Section 3). The fitted parameters
define the surface shape and the probe position. In the case that the
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Fig. 1. Setup schematic. (a) Coordinate systems, array face, and test component surface. (b) Vectors involved in the reflection law.

Fig. 2. 2D transducer array. Probe face element distribution. (a) Arbitrary distribution, (b) Matrix array.

surface shape is already known, this procedure can be used to estimate
the PLO parameters.

The modeling function 8 depends on the type of transmitted wave
and the type of geometry. To compute the arrival time for a receiving
element E, the point G on S where the incident wave is reflected
towards E must be determined. This point G should satisfy the law of
reflection (Fig. 1.b): the incident ray <𝜛𝜕ℏ𝜔 , the reflected ray <𝜛4>⋆≨ and
the surface normal 𝐴ℏ at G must lie in the sample plane (the so-called
incidence plane) and the incidence angle 7𝜕ℏ𝜔 (included angle between
<𝜛𝜕ℏ𝜔 and 𝐴ℏ) and reflection angle 74>⋆≨ (included angle between <𝜛4>⋆≨ and
𝐴ℏ) must be equal. Once G is known, the arrival time is computed as:

ℵ𝜀 = ℵ𝜕ℏ𝜔 +
1
𝜔1

⦅

⦅

⦅

𝐵ℶ⦅⦅
⦅

(5)

Where ℵ𝜕ℏ𝜔 is the time take by the emitted (incident) wave to arrive to G.
Both ℵ𝜕ℏ𝜔 and <𝜛𝜕ℏ𝜔 depend on the transmitted wave. The distance

⦅

⦅

⦅

𝐵ℶ⦅⦅
⦅

is computed in WCS using (2) for the element coordinates. In the case
of single element transmission, for a transmitting element ℶℵ⊲:

<𝜛𝜕ℏ𝜔 =
⦅

⦅

⦅

𝐵ℶℵ⊲
⦅

⦅

⦅

ℵ𝜕ℏ𝜔 =
1
𝜔1

⦅

⦅

<𝜛𝜕ℏ𝜔⦅
⦅

(6)

In the case of plane wave emission, let <𝜛⊳𝜚 be the unitary direction
vector of the wave (normal to the wavefronts), then:

<𝜛𝜕ℏ𝜔 = <𝜛⊳𝜚

ℵ𝜕ℏ𝜔 =
1
𝜔1

<𝜛⊳𝜚 ⋛𝜍𝜑𝐵
(7)

where the ⋛ is the dot product between two vectors. The distances ⦅⦅
⦅

𝐵ℶ⦅⦅
⦅

and ⦅

⦅

<𝜛𝜕ℏ𝜔⦅
⦅

are computed in WCS using (2) for the element coordinates.
For an arbitrary surface shape, given a transmitted wave, finding

G for each receiving element is a problem with no closed solution: it
must be solved by an iterative algorithm. It is a root finding problem of
two variable function. However, for some simple geometries a closed
formula can be found. In the following sections we will analyze some
particular cases were an analytical expression for function 8 can be de-
rived, at least approximately. The surface types we are going to analyze
are plane, cylindrical and spherical surfaces, which are representative
of usual NDT inspection problems, and can be also used to locally
describe more complex geometries.

2.1. Pulse–echo acquisition

For this method, each array element E transmits and receives (thus
the pulse–echo name) sequentially. Thus N transmission are used, and
a single element receiving aperture. In this case, as the emitter and
receiver are the same element, 7𝜕ℏ𝜔 = 74>⋆≨ = 0, and the vector 𝐵ℶ is
parallel to 𝐴ℏ (Fig. 1.b).

2.1.1. Plane surface
The simplest possible geometry is a plane surface (Fig. 3.a). The

WCS can always be chosen such that S is the XY-plane (z=0), and 𝐴ℏ = 𝐴1
where 𝐴1 is the unitary vector in z-direction. Besides, 𝜍2 is selected such
that the probe center is on the z-axis, ⦄⦄

⦄

𝜍2 ℶ⦄⦄
⦄2

= (0, 0,𝜍𝜑 ,1) In this case
G is such that:
⦅

⦅

⦅

𝐵ℶ⦅⦅
⦅

=𝜍2 ℶ ⋛ 𝐴1 (8)
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Fig. 3. Simple geometries where the incidence point G can be easily found. (a) Plane surface, (b) Cylindrical surface, (c) Spherical surface.

where we suppose the probe above S (this convention is used through-
out this article). In other words, ⦅⦅

⦅

𝐵ℶ⦅⦅
⦅

is the z coordinate of element E,
which is computed with Eq. (2). Eq. (5) thus becomes:

ℵ𝜀 = 2
𝜔1

ℶ1 (9)

The rotation matrix can be parametrized with only 2 angles, because
a rotation around de z-axis does not affect the arrival times. The total
number of parameters to be fitted is then only 3.

2.1.2. Cylindrical and spherical surfaces
Another simple geometry is a cylindrical surface. In this case WCS

can be chosen such that the cylinder axis is the x-axis. Thus, the only
parameter needed to define the cylinder is its radius 𝐶𝜔0≨. If we draw a
line from E to the cylinder axis and orthogonal to the latter, then G is
the intersection between the said line and the cylinder (Fig. 3.b). The
normal 𝐴ℏ at G is parallel to (0,ℶ0,ℶ1), and hence:

ℵ𝜀 = 2
𝜔1

⦆[

ℶ2
0 + ℶ2

1 ε 𝐶𝜔0≨

]

(10)

Taking advantage of the translational symmetry, WCS is chosen
such that ⦄⦄

⦄

𝜍2 ℶ⦄⦄
⦄2

= (0,𝜍𝜑 ,0,𝜍𝜑 ,1) and the rotational symmetry of the
cylinder allows to set the Euler angle corresponding to rotation around
x-axis to be fixed as zero.

For a radius 𝐶,⊳𝐷 spherical surface (Fig. 3.c) the geometry is very
similar. If 𝜍2 is chosen in the sphere’s center, then:

ℵ𝜀 = 2
𝜔1

⦆[

ℶ2
⊲ + ℶ2

0 + ℶ2
1 ε 𝐶,⊳𝐷

]

(11)

In this case any configuration can be described by ⦄

⦄

⦄

𝜍2 ℶ⦄⦄
⦄2

=
(𝜍𝜑 ,⊲,𝜍𝜑 ,0,𝜍𝜑 ,1) and no Euler angle is needed, because the spherical
symmetry allows WCS to be chosen in such a way that the probe face
is aligned to the axes.

In the cylindrical case 5 parameters (0, 1, 70, 71,𝐶𝜔0≨) are needed to
define the geometry, and 4 parameters (⊲, 0, 1,𝐶,⊳𝐷) are needed in the
spherical case.

It is worth to mention that the planar, spherical and cylindrical cases
are particularly interesting for local estimation of the surface, because
more complex geometries can be constructed by the junction of these
simpler cases.

2.1.3. Reflection on the concave side of a cylinder or sphere
In the previous sections the probe was facing the convex side of

either cylinder or sphere. But, what happens if the probe emits towards
the concave side? The geometrical reasoning is equivalent, but now
there are two diametrically opposite points G and G’ that satisfy the
reflection law (Fig. 4). As the array element E only radiates to a half-
space (indicated by the main lobe arrow in Fig. 4), only one of those
points is physically realized. In one case (Fig. 4.a) the physical ray is

shorter that the radius, and in the other case (Fig. 4.b) the physical ray
is larger than the radius. Hence, for the pulse–echo method, Eqs. (10)
and (11) must be modified as follows:

ℵ𝜀 = 2
𝜔1

⦆

𝐶𝜔0≨ ±
[

ℶ2
0 + ℶ2

1

]

(12)

ℵ𝜀 = 2
𝜔1

⦆

𝐶𝜔0≨ ±
[

ℶ2
⊲ + ℶ2

0 + ℶ2
1

]

(13)

The sign of the sum in equations is chosen by following the ex-
plained criterion: - for the case in Fig. 4.a, and + for the case in Fig. 4.b.

2.2. Pitch–catch acquisition

In this case, for each transmission event, a single element ℶℵ⊲ is
excited and an another element E receives the echo. This element
belongs to a chosen reception aperture, that might be the whole array
if enough parallel channels are available.

A simple analytical method to find the point G in this case is only
available for the plane surface. For a spherical surface, finding G is
a famous mathematical problem: the Alhazen’s problem, in honour to
the Arabian medieval mathematician and astronomer Ibn al Haytham
(latinized as Alhazen), who provided the first published solution to the
problem by using an intricate geometrical construction [22]. Analytical
solutions for the sphere and for quadric surfaces in general are provided
in [23] in terms of roots of polynomials in the complex plane. Those
roots must be computed by numerical methods. Thus, for each pair of
array elements a numerical roots finding algorithm must be executed
resulting in a heavy computational load.

We propose in this work two approximate methods that provide
closed formulas to solve the problem. In the first approximation, a small
receiving subaperture around ℶℵ⊲ is used, such that a receiving element
E is close to ℶℵ⊲ (compared to curvature radius) and the local tangent
plane (Fig. 5.b) can be used to approximate the surface. The problem is
thus reduced locally to the plane surface, which has a closed solution
as will be exposed below. On the other hand, if the complete array
aperture is used in reception, we propose an approximation method
based on the spherical (or circular) mirror equations from geometrical
optics [24].

2.2.1. Plane surface
The law of reflection states that the angles 7𝜕ℏ𝜔 and 74>⋆≨ (Fig. 5.a) by

the incident and reflected rays with the surface normal at the reflection
point are always equal. This implies that, as illustrated in Fig. 5.a, the
ray path from ℶℵ⊲ to ℶ has the same length as the straight line that
joins ℶ with ℶω

ℵ⊲, the specular image of ℶℵ⊲ created by the reflecting
plane (Fig. 5.a). The time of flight is thus given by:

ℵ𝜀 = 1
𝜔1

⦅

⦅

⦅

ℶω
ℵ⊲ℶ

⦅

⦅

⦅

(14)
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Fig. 4. Cross section of cylinder or sphere containing an array element. Schematic of the criterion to choose the correct reflection point. (a) and (b) show the two possible cases
for the reflection point in the pulse–echo mode.

Fig. 5. Geometry for the pitch-catch method. (a) Law of reflection and mirror image (b) Reflection at the tangent plane.

Using as before a WCS such that the reflecting plane is the XY plane,
the coordinates of ℶω

ℵ⊲ are (ℶℵ⊲,⊲,ℶℵ⊲,0,εℶℵ⊲,1), and Eq. (12) becomes:

ℵ𝜀 = 1
𝜔1

[

(ℶ⊲ ε ℶℵ⊲,⊲)2 + (ℶ0 ε ℶℵ⊲,0)2 + (ℶ1 + ℶℵ⊲,1)2 (15)

2.2.2. Cylindrical and spherical surfaces
Let us call 𝐵0 to the point 𝐵 in the pulse–echo case (𝐵 point in

Fig. 3.b). If we use a small reception aperture such that receiver ℶ is
close enough to the transmitter ℶℵ⊲ (

⦅

⦅

⦅

ℶℵ⊲ℶ
⦅

⦅

⦅

𝐸 𝐶𝜔0≨), then 𝐵 is close
to 𝐵0. Therefore, we can approximate the cylindrical surface in the
vicinity of 𝐵0 by the tangent plane (Fig. 5.b), and use the method
explained before for a plane surface. To find the specular image of ℶℵ⊲
through the tangent plane we use the projection of the vector 𝐵0ℶℵ⊲
onto the plane normal 𝐴ℏ. From Fig. 5.b:

𝜍2 ℶω
ℵ⊲ =𝜍2 ℶℵ⊲ε 2(𝐵0ℶℵ⊲ ⋛ 𝐴ℏ) 𝐴ℏ (16)

where 𝐴ℏ and 𝐵0 are give by:

/ 𝐴ℏ/2 = ±
(0,ℶ0,ℶ1)
[

ℶ2
0 + ℶ2

1

(17)

𝜍2 𝐵0 = ±𝐶𝜔0≨ 𝐴ℏ (18)

and the sign ± is selected according to the criteria explained in Sec-
tion 2.1.3 Using Eqs. (16), (17) and (18), the specular image of the
emitter is found and TOF is computed by Eq. (14)

An analogous procedure is used for the spherical surface, the only
difference being how 𝐴ℏ and 𝐵0 are computed:

/ 𝐴ℏ/2 = ±
(ℶ⊲,ℶ0,ℶ1)
[

ℶ2
0 + ℶ2

1

(19)

𝜍2 𝐵0 = ±𝐶,⊳𝐷 𝐴ℏ (20)

This pitch–catch method works as an extension of the pulse–echo
method presented in Section 2.1. Both of them might be subject of a
problem schematized in Fig. 6: the angle 𝐹 formed by the ray with
normal incidence could be too large for the angular sensitivity of the
array element, resulting in very low amplitude surface echoes. This
issue impacts the concave case (6.b) more than the convex one (6.a).

To solve this problem, we propose an alternative in which the whole
array aperture is used in reception, in such a way that is more probable
to catch more energetic rays. When using the whole aperture, the
distance of a receiving element to the emitter might be too large for
the 𝐵0 tangent plane approximation. We can apply in this case the
geometrical optics model [24] of the spherical mirror, illustrated in
Fig. 7. The mirrors optical axis (Fig. 7.b) is the line passing through the
vertex 𝐺 and the circle center. In the paraxial approximation, all the
rays coming from an object (point Ob in Fig. 7) which are reflected by
the mirror pass through a real or virtual image (point Im in Fig. 7). To
define the positions of the object and its image a coordinate system VCS
with origin at 𝐺 is used. The first VCS axis is coincident with the first
WCS, and the third axis is the optical axis (Fig. 7). A radius 𝐶 mirror
has a focal point with VCS coordinates (0, 0, ⋆ ) where ⋆ = ±𝐶

2 , + for
the concave case (Fig. 7.a) and - for the convex one (Fig. 7.b). The VCS
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Fig. 6. Deviation of the normal incidence ray (ray that passes through the circle
center). (a) Convex case, (b) Concave case.

object coordinates (0,𝜍𝐻2,𝜍𝐻3) and the image coordinates (0, 𝐼𝐽2, 𝐼𝐽3)
are related by [24]:
1

𝐼𝐽3
+ 1

𝜍𝐻3
= 1

⋆
(21)

𝐼𝐽2 = ε
𝐼𝐽3
𝜍𝐻3

𝜍𝐻2 (22)

Eq. (21) is valid only for the so-called paraxial rays, those whose
incidence angle 7𝜕ℏ𝜔 is small enough for the approximation 7𝜕ℏ𝜔 = sin 7𝜕ℏ𝜔
to hold.

The cross section of cylindrical mirror whose axis is the x-axis of
WCS is a circle in the yz-plane. A ray <𝜛𝜕ℏ𝜔 reflected by this mirror can
be split as

<𝜛𝜕ℏ𝜔 = <𝜛𝜕ℏ𝜔,⊲ + <𝜛𝜕ℏ𝜔,01, being <𝜛𝜕ℏ𝜔,⊲ the component along x-axis, and
<𝜛𝜕ℏ𝜔,01 the projection onto yz-plane. The reflected vector is (Fig. 1.b):

<𝜛4>⋆≨ = <𝜛𝜕ℏ𝜔ε2(<𝜛𝜕ℏ𝜔 ⋛ 𝐴ℏ) 𝐴ℏ = <𝜛𝜕ℏ𝜔,⊲+ <𝜛𝜕ℏ𝜔,01ε2(<𝜛𝜕ℏ𝜔,01 ⋛ 𝐴ℏ) 𝐴ℏ = <𝜛𝜕ℏ𝜔,⊲+ <𝜛4>⋆≨,01 (23)

where the relation <𝜛𝜕ℏ𝜔,⊲ ⋛ 𝐴ℏ = 0 was used, because the normal to the
cylinder is always orthogonal to the x-axis. The vector <𝜛4>⋆≨,01 is the
reflection of <𝜛𝜕ℏ𝜔,01. Therefore, the reflection inside yz-plane can be
treated with the circular mirror model. Fig. 8 illustrates the geometry
of the problem. The concave case is shown, as it is the one for which
this method results more helpful. Nevertheless, the following rationale
is valid for both the concave and convex cases. Fig. 8.a show a 3D
representation, and Fig. 8.b shows the projection onto yz-plane. It is
significant to notice that although the points displayed in Fig. 8.b are
projections, we utilized the names of the corresponding 3D points to
avoid cluttering the image. A rough outline of the procedure to find
the TOF from ℶωω

ℵ⊲ to ℶ is the following: a cross section is drawn that
contains the receiver ℶ (Fig. 8.a). The emitter ℶℵ⊲ is projected onto that
plane, and the ray tracing is done in two dimensions (Fig. 8.b), using
the circular mirror model, by which we can find the incidence point 𝐵
(projected onto the plane). The tangent plane at this point can be used
to get a mirror image ℶωω

ℵ⊲ , such that the TOF can be computed with the
distance ⦅

⦅

⦅

ℶωω
ℵ⊲ ℶ

⦅

⦅

⦅

. The step by step description of the procedure:

1. Elements ℶℵ⊲ and ℶ are projected onto the yz-plane. We call their
projections ⊳45ℷ(ℶℵ⊲) and ⊳45ℷ(ℶ).

2. To define an optical axis, the probe normal 𝐴ℏ𝜑 is also projected
onto the yz-plane, and the vertex 𝐺 is computed as the intersec-
tion between the circle and the line from ⊳45ℷ(ℶℵ⊲) with direction
given by ⊳45ℷ( 𝐴ℏ𝜑 ). The reason to choose this vertex is that the
more energetic rays from the emitter have the direction of 𝐴ℏ𝜑 .

3. Once the optical axis is defined, the image of ℶω
ℵ⊲ of ⊳45ℷ(ℶℵ⊲) is

computed according to Eq. (21). To this end, the coordinates of
(ℶℵ⊲,1,ℶℵ⊲,2) of ⊳45ℷ(ℶℵ⊲) in VCS must be found. Using (0,𝐺0,𝐺1)
for the WCS coordinates of 𝐺 as computed in the previous step,
the cylinder normal at 𝐺 gives the direction of the optical axis
𝐴ℏ5𝐾 (Fig. 8.b):

⦄

⦄

𝐴ℏ5𝐾⦄
⦄2 = (0, ℏ5𝐾,0, ℏ5𝐾,1) = ±

⦆

𝐺 2
0 + 𝐺 2

1

]ε1ϖ2
(0,𝐺0,𝐺1) (24)

The coordinate transformation from WCS to VCS is given by:
}

ℶℵ⊲,2
ℶℵ⊲,3

⦃

= 𝐿2 ,𝐺

}

ℶℵ⊲,0 ε 𝐺0
ℶℵ⊲,1 ε 𝐺1

⦃

(25)

𝐿2 ,𝐺 =
}

ℏ5𝐾,1 εℏ5𝐾,0
ℏ5𝐾,0 ℏ5𝐾,1

⦃

(26)

The mirror Eq. (21) can be reformulated to compute the third
VCS coordinate ℶω

ℵ⊲,3 of the image as:

ℶω
ℵ⊲,3 =

}

1
⋆

ε 1
ℶℵ⊲,3

⦃ε1
(27)

The second component is found with Eq. (22):

ℶω
ℵ⊲,2 = ε

ℶω
ℵ⊲,3

ℶℵ⊲,3
ℶℵ⊲,2 (28)

4. The coordinates of ℶω
ℵ⊲ in WCS are computed by the inverse

transformation:
⟦

ℶω
ℵ⊲,0

ℶω
ℵ⊲,1

⟧

= 𝐿 ε1
2 ,𝐺

⟦

ℶω
ℵ⊲,2

ℶω
ℵ⊲,3

⟧

+
}

𝐺0
𝐺1

⦃

(29)

5. As show in Fig. 8.b, the ray from ⊳45ℷ(ℶℵ⊲) reflects at ⊳45ℷ(𝐵) and
goes to ⊳45ℷ(ℶ) through the image ℶω

ℵ⊲. Thus, point ⊳45ℷ(𝐵) can
be found by intersecting the line that from ⊳45ℷ(ℶ) with direction
⊳45ℷ(ℶ)ℶω

ℵ⊲
6. The cylinder normal ℏ𝐵at ⊳45ℷ(𝐵) is computed with an equation
analogous to (17).

⦄

⦄

𝐴ℏ𝐵⦄
⦄2 = ±

(0,𝐵0,𝐵1)
[

𝐵2
0 + 𝐵2

1

(30)

and the sign ± is selected according to the criteria explained in
Section 2.1.3

7. The normal ℏ𝐵 defines the tangent plane at 𝐵. As shown in
Fig. 8.a, the 3D ray from ℶℵ⊲ to ℶ is equivalent (same length)
to the ray from ℶωω

ℵ⊲ to ℶ, where ℶωω
ℵ⊲ is the mirror image of ℶℵ⊲

by the tangent plane at 𝐵. Thus, we compute the TOF as:

ℵ𝜀 = 1
𝜔1

⦅

⦅

⦅

ℶωω
ℵ⊲ ℶ

⦅

⦅

⦅

(31)

It is worth to note that unlike ℶω
ℵ⊲, which is a single point for

each emitter, the image ℶωω
ℵ⊲ computed at the last step depends on the

receiver. As such, it is not a standard mirror image.
The case of a spherical surface is similar but easier. Given ℶℵ⊲ and

ℶ, the plane that contains these points and the sphere’s center should
be found. The ray from ℶℵ⊲ and ℶ is contained in that plane, thus
the problem is treated as the cylindrical one but there is no need of
projections.

2.3. Plane wave acquisition

This section presents the calculation of ℵ𝜀 for the case of plane wave
emission and the three geometries considered.

2.3.1. Plane surface
A plane wave with direction <𝜛⊳𝜚 is emitted with delays such that a

ℵ = 0 the wave front passes through 𝜍𝜑 . The wave reflected the xy-plane
has direction given by:

<𝜛ω⊳𝜚 = <𝜛⊳𝜚 ε 2(<𝜛⊳𝜚 ⋛ 𝐴ℏ) 𝐴ℏ (32)

and behaves as if emitted from the probe mirror image, thus:

ℵ𝜀 = 1
𝜔1

<𝜛ω⊳𝜚 ⋛𝜍ω
𝜑 ℶ (33)
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Fig. 7. Geometry of the circular mirror: real and virtual images of an object. (a) Convex case, real image, (b) Concave case, virtual image.

Fig. 8. Cylindrical mirror geometry for the pitch–catch method. (b) 3D view, (b) Projection onto yz-plane, where the circular mirror ray tracing is done according to geometrical
optics.

2.3.2. Cylindrical and spherical surfaces
The rationale is very similar to the pitch–catch method described

in the preceding section. Fig. 9.a illustrates the geometry involved in
the calculations. In this case, instead of a transmitter ℶℵ⊲ there is a
plane wave with direction given by <𝜛⊳𝜚 such that its wave front at
time ℵ = 0 passes through the probe center 𝜍𝜑 . To define an optical
axis, the probe normal 𝐴ℏ𝜑 is also projected onto the yz-plane, and the
vertex 𝐺 is computed as the intersection between the circle and the
line from ⊳45ℷ(𝜍𝜑 ) with direction given by ⊳45ℷ( 𝐴ℏ𝜑 ). The plane wave
reflected on the circular mirror converges to a point 𝑀 on the mirror’s
focal line (line through ⋆ orthogonal to the optical axis. This point 𝑀
will play the role of ℶω

ℵ⊲. As shown in Fig. 9.b, the VCS coordinates of

𝑀 are given by:

(𝑀2,𝑀3) = (ε⋆ tan(𝑁), ⋆ ) (34)

where tan(𝑁) =
𝜛⊳𝜚,2
𝜛⊳𝜚,3

.

For each receiving element ℶ, the corresponding ⊳45ℷ(𝐵) is found by
intersecting the circle. with the line from𝑀 that passes through ⊳45ℷ(ℶ)
(Fig. 9.a). As in the pitch–catch method, the cylinder normal at ⊳45ℷ(𝐵)
is computed with Eq. (30), and the tangent plane is used to locally
reflect the plane wave. The reflected wave vector <𝜛ω⊳𝜚 is computed with
Eq. (23). The probe center mirror image 𝜍ω

𝜑 created by the tangent
plane is computed, and the TOF computed with Eq. (33).
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Fig. 9. Circular mirror geometry for the plane wave method.

Fig. 10. Test specimens and experimental set-up (a) 9.5 mm radius sphere (b) 6 mm radius rod (c) 40 mm radius concave surface and (d) experimental set-up.

3. Experiments

For validation of the methods proposed in the previous section, a set
of experiments were performed using a 3 MHz, 11 ϱ 11 matrix array
(Imasonic, France), with 1 mm pitch (square active aperture 11 mm
side length). The ultrasound instrument used was a 128 channels full
parallel system (DASEL S.L., Spain). Full Matrix Capture (FMC) was
used for all acquisitions, as pulse–echo, pitch–catch and plane wave
acquisitions can be synthesized from the FMC signals. All the exper-
iments were done in an immersion set up, and a 6-axis collaborative
robot (Universal Robots, Denmark) was used for probe positioning.

Four test specimens where used: a flat aluminum plate, a 9.5 mm
radius steel sphere (Fig. 10.a), and two cylinders CYL1 (Fig. 10.b) and
CYL2 (Fig. 10.c). CYL1 is a 6 mm radius aluminum cylinder that was
used to test the convex case. CYL2 is an aluminum block with a 40 mm
radius concave cylindrical surface. For the experiments the component
was laid onto a flat surface, which was used as a reference plane to
measure the probe location and orientation (PLO). In the case of the
aluminum plate, the component itself was the reference plane.

In all cases (plane, cylindrical and spherical surfaces) the WCS z-
axis was defined orthogonal to the reference plane. For the aluminum
plate the specimen surface is the xy-plane (z=0). In the case of the
cylindrical surface the cylinder’s axis is the x-axis. In the case of the

spherical surface the xy-plane is parallel to the reference plane and
the coordinate origin is at the sphere’s center. In order to measure the
nominal PLO the following procedure was used:

1. The 6 degrees of freedom used by the robot are (⊲, 0, 1, 7⊲, 70, 71).
An initial PLO is defined 𝜑𝑂𝜍0 = (0, 0, 10, 0, 0, 0). To physically
set this 𝜑𝑂𝜍0 the probe face must be oriented parallel to the
reference plane. This is achieved by acquiring the pulse–echo
A-scan of the probe corner elements. The probe is rotated until
the surface echo TOF is equal in the four signals. In this way the
angles 7⊲, 70 are set to zero.

2. Once the probe face is orthogonal to the z-axis, it is located at
an arbitrary height above the reference plane, and then gently
moved towards it until contact. The contact condition is detected
by the robot’s force sensor. The amount of the displacement is
10 in the plane surface case, and 10 ε 𝐷 in the cylindrical and
spherical cases, where 𝐷 is the height of the center relative to
the reference plane, which is a known geometrical dimension of
the component.

3. For the plane surface, any position can be defined as (⊲ =
0, 0 = 0). In the cylindrical case, to set 0 = 0 and 71 = 0 it is
needed to center the probe above the cylinder. This is achieved
by gently displacing and rotating the cylinder in order to set
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Table 1
Variables changed in each experiment.

Exp1 Exp2

Plane 7⊲ , 70 1, 7⊲
Sphere ⊲, 0 ⊲, 1
Cylinder 70 , 71 0, 1

the same surface echo TOF in the four corner element A-scans,
which means that the probe is centered on the cylinder axis and
symmetric about the xz-plane. The same method is used to center
the probe above the sphere, which sets (⊲ = 0, 0 = 0)

4. Starting from 𝜑𝑂𝜍0, relative motions are preformed with the
robotic arm. Therefore, the target values are taken as the
(⊲, 0, 1, 7⊲, 70, 71) measurements.

It is worth to mention that although the robotic arm has a 0.05 mm
repeatability, the PLO measurements are affected by a systematic error
introduced in the procedure to set the 𝜑𝑂𝜍0 and in the measurement
of the geometrical dimensions of the specimens. For example, when
adjusting 𝜑𝑂𝜍0 to set 0 = 0 for the cylinder case, the four A-scan signals
cannot be perfectly aligned to get the same surface echo TOF. Thus,
some small offset in 0 is to be expected. Additionally, the height 𝐷 of
the cylinder axis relative to the reference plane, which is measured by
mechanical means, is subject to an error that propagates to 10.

Furthermore, there is another systematic error source: to keep 𝜍𝜑
fixed, the robot’s Tool Center Point (TCP) must be correctly set. To this
end, the 𝜍𝜑 coordinates relative to the robot tool flange must be known.
This depends on the probe holder device and is subject to measurement
error. Thus, when rotating the probe, 𝜍𝜑 will move on the surface of
sphere whose radius is the TCP error.

For all the FMC acquisitions, the surface echo TOF ℵ𝜀 (𝜕)ω was
measured by threshold crossing. To achieve this, we employed the
signal envelope and picked the first point that exceeded the threshold,
which was chosen relative to background noise. For each signal, a 𝐿𝜚𝜕ℏ
width window starting at the threshold crossing time ℵ𝜀 (𝜕)ω was used to
compute a feature 𝜚(𝜕) that characterizes the amplitude of the detected
surface echo:

𝜚(𝜕) = max
0∱𝑃∱𝐿𝜚𝜕ℏ

𝐾(𝜕, ℵℵ𝐷4 + 𝑃) (35)

where 𝐾(𝜕, ℵ) is the element 𝜕 signal envelope. These features are the
weights used in the cost Eq. (4), to reduce the impact of low amplitude
signals (more affected by noise) during the optimization process.

The pitch–catch methods was applied in all cases using 9 emitter
elements: those with indexes (1, 1), (5, 1), (1, 5), (9, 1), (1, 9), (5,
9), (9, 5), (9, 9), (5, 5). For the sphere and for CYL1, the receiving
sub-aperture was 3 ϱ 3 elements, centered in the emitter.

The plane wave method was applied with a single emission: a 0⋜

plane wave relative to the probe face normal. If we suppose no prior
knowledge of the PLO, then this plane wave direction is a natural
choice. The plane wave acquisition was synthesized from the FMC data.

For each specimen, two experiments Exp1 and Exp2 were done. In
each experiment PLO was varied in two of its degrees of freedom and
an FMC was acquired for each PLO. Table 1 summarizes the degrees of
freedom varied for each experiment.

4. Results

This section presents the results of the methods developed in Sec-
tion 2 when applied to the four test specimens.

Table 2
Error statistics (std:standard deviation) for the two experiments with the plane surface.
In the case of the plane wave method, the statistics where computed excluding angles
larger than 5⋜.
PLANE pulse-echo pitch-catch plane wave

mean std max mean std max mean std max

Exp1
1 (mm) ε0.25 0.09 0.36 ε0.23 0.08 0.33 ε0.27 0.03 0.3
7⊲ (⋜) ε0.25 0.09 0.46 ε0.26 0.07 0.46 ε0.47 0.3 1.04
70 (⋜) ε0.01 0.14 0.35 ε0.01 0.12 0.35 ε0.17 0.25 0.76

Exp2
1 (mm) ε0.21 0.1 0.35 ε0.16 0.06 0.25 ε0.19 0.03 0.24
7⊲ (⋜) ε0.19 0.17 0.88 ε0.25 0.09 0.42 ε0.53 0.46 1.58
70 (⋜) 0.10 0.13 0.51 0.12 0.06 0.21 0.07 0.04 0.16

4.1. Plane surface

Figs. 11 and 12 show the fitted PLO parameters for the aluminum
plate Exp1 and Exp2 respectively. Abcissas correspond to nominal
values of one degree of freedom. The other degree of freedom is
indicated by colors in the legend. The ordinates correspond to the
estimated values. Table 2 contains overall error statistics. It is observed
in Figs. 11 and 12 that the pulse–echo and pitch–catch methods provide
very similar results: in a general view both perform well in measuring
both z and the angles, but z values are systematically lower than the
target value by an amount of about 0.2 mm (as can be seen in Table 2).
This systematic error is related to the fact that ultrasonic TOF absolute
distance measurement is a difficult task, greatly affected by the method
used to measure the pulse arrival time [19]. Errors in ℵ𝜀 (𝜕)ω directly
affect 1. However, the amount of z displacements (2 mm nominal value)
in Exp2 is accurately measured: the mean value is 2 mm (negligible
systematic error) and the standard deviation 0.02 mm. On the other
hand, the plane wave methods fails for angles larger than 5⋜, and has
larger errors for angle estimation ( Table 2). This is to be expected: as
the angle between the plane wave direction and the surface normal
gets large, only a few reflected rays impinge on the probe aperture
causing most of the array elements to receive very low acoustic energy.
However, as can be observed in Fig. 12, z values are still correctly
estimated for some PLOs, even for cases in which 7⊲ presents a large
error, and z displacements are as accurate as with the pulse–echo
and pitch–catch methods. Thus, for an application where angles are
expected to be close to zero, the plane wave method might be a good
choice, considering that it uses a single emission.

4.1.1. Spherical surface
Figs. 13 and 14 show the fitted PLO parameters for the steel sphere

Exp1 and Exp2 respectively. Table 3 contains overall error statistics.
It is observed that the three methods have a good performance. Coor-
dinates x and y are estimated in all cases with a precision (standard
deviation) of less that 0.1 mm and about 0.1 mm systematic error
probably caused by an error in the 𝜑𝑂𝜍0 setting. Coordinate z, as with
the plane surface case, shows the same type of systematic error: about
0.3 mm in the pulse–echo and pitch–catch methods. In the plane wave
case this systematic error shows a very different behavior than the other
two methods, as can be observed in Fig. 13. While for pulse–echo and
pitch–catch the estimated 1 is almost constant as 0 changes, in the
plane wave case 1 estimation shows a systematic increase as 0 departs
from 0. This is consistent with the limitations of the circular mirror
approximation used in the model: as the probe center departs from the
z-axis, the optical axis forms a larger angle with the 0⋜ emitted plane
wave and the paraxial approximation gets less accurate. In relation to
z displacement errors, the same accuracy and precision as in the plane
surface case are obtained for the three methods: a negligible systematic
error and 0.02 mm standard deviation.
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Fig. 11. Plane surface Exp1 results. The abscissas corresponds to the nominal 70 values, and the ordinates to the fitted values. Nominal 10 is 17.5 mm (dashed line).

Fig. 12. Plane surface Exp2 results. The abscissas corresponds to the nominal 7⊲ values, and the ordinates to the fitted values. The horizontal dashed lines in the z plots indicate
de nominal values.

4.1.2. Cylindrical surface
CYL1, convex surface. Figs. 15 and 16 show the fitted PLO parameters
for CYL1 Exp1 and Exp2 respectively. Table 4 contains overall error
statistics. It is observed that, as in the previous cases, pulse–echo an

pitch–catch methods provide very similar results, and that the plane
wave methods starts to fail for 70 larger than 5⋜ (absolute value). The
systematic error in z coordinate is again observed, around 0.5 mm in
this case. Fig. 15 shows a trend in 0 and 1. As this trend shows an
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Fig. 13. Spherical surface Exp1 results. The abscissas corresponds to the nominal 0 values, and the ordinates to the fitted values. Nominal 10 is 25.5 mm (dashed line).

Fig. 14. Spherical surface Exp2 results. The abscissas corresponds to the nominal 1 values, and the ordinates to the fitted values. Nominal 0 is 0 mm.

asymmetric effect about the xz-plane, we think this is mainly due to an
inexact 𝜑𝑂𝜍0 with a small offset in coordinate 0. In fact, the measured
0 values show a positive mean offset (Fig. 15). Additionally, a TCP
configuration error might have such an asymmetric trend effect.

CYL2, concave surface. In this case the methods applied are pitch–catch
with the complete receive aperture, and plane wave. As explained in
Section 2.1.2 pulse–echo signals in a concave case might suffer from a
low angular sensitivity effect and the pulse–echo method in fact failed
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Fig. 15. CYL1 Exp1 results. The abscissas corresponds to the nominal 70 values, and the ordinates to the fitted values. Nominal 10 is 14.75 mm (dashed line).

Fig. 16. CYL1 Exp2 results. The abscissas corresponds to the nominal 1 values, and the ordinates to the fitted values. Nominal angles are 70 = 0⋜ and 71 = 0⋜.

when tried with CYL2. Figs. 17 and 18 show the fitted PLO parameters
for CYL2 Exp1 and Exp2 respectively. Table 5 contains overall error
statistics. The pitch–catch method shows good performance but as z
gets closer to the cylinder center errors increase, as can be seen in

Fig. 18. This is related to the fact that when a source element is located
on a diametrical line of a circular mirror, its mirror image is also located
in that same line, as can be derived from (21). Thus, acoustic energy
gets concentrated in few array elements. This causes 𝜚(𝜕) to be very low
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Table 3
Error statistics for the two experiments with the spherical surface.
SPHERE pulse-echo pitch-catch plane wave

mean std max mean std max mean std max

Exp1
⊲ (mm) ε0.05 0.04 0.12 ε0.05 0.05 0.12 ε0.05 0.09 0.24
0 (mm) 0.10 0.06 0.22 0.11 0.07 0.23 0.11 0.08 0.29
1 (mm) ε0.31 0.02 0.34 ε0.3 0.02 0.33 ε0.04 0.12 0.27

Exp2
⊲ (mm) ε0.03 0.04 0.14 ε0.03 0.06 0.15 ε0.04 0.04 0.16
0 (mm) 0.10 0.02 0.15 0.11 0.02 0.15 0.10 0.03 0.15
1 (mm) ε0.33 0.02 0.38 ε0.32 0.02 0.37 ε0.18 0.08 0.32

Table 4
Error statistics for the two experiments with CYL1. In the case of the plane wave
method, the statistics where computed excluding 70 > 15⋜.

CYL1 pulse-echo pitch-catch plane wave

mean std max mean std max mean std max

Exp1

0 (mm) 0.03 0.03 0.08 0.03 0.03 0.09 0.03 0.04 0.13
1 (mm) 0.44 0.06 0.50 0.45 0.06 0.51 0.39 0.04 0.43
70 (⋜) ε0.22 0.09 0.47 ε0.21 0.08 0.44 0.32 0.75 1.97
71 (⋜) 0.06 0.18 0.79 ε0.09 0.18 0.48 0.02 1.27 4.45

Exp2

0 (mm) 0.06 0.02 0.1 0.06 0.02 0.1 0.06 0.02 0.1
1 (mm) 0.49 0.02 0.52 0.50 0.02 0.53 0.5 0.02 0.53
70 (⋜) ε0.22 0.03 0.26 ε0.24 0.03 0.31 ε0.24 0.03 0.31
71 (⋜) ε0.07 0.14 0.4 ε0.08 0.2 0.56 ε0.08 0.2 0.56

Table 5
Error statistics for the two experiments with CYL2. In the case of the plane wave
method, the statistics where computed excluding 70 > 5𝜔𝜕4𝜔 and 1 < 5 mm.

CYL2 pitch-catch plane wave

mean std max mean std max

Exp1

0 (mm) 0.03 0.07 0.2 0.02 0.07 0.17
1 (mm) ε0.49 0.06 0.69 ε0.48 0.01 0.53
70 (⋜) ε0.34 0.07 0.52 ε0.02 0.26 0.48
71 (⋜) ε0.35 0.1 0.7 0.03 0.93 3.39

Exp2

0 (mm) ε0.02 0.08 0.25 ε0.0 1.26 5.66
1 (mm) ε0.44 0.03 0.5 ε0.48 0.11 0.96
70 (⋜) ε0.03 0.06 0.23 0.04 0.14 0.86
71 (⋜) ε0.04 0.55 1.79 ε0.28 1.56 6.23

for many elements and very high for the few elements where acoustic
energy is concentrated, possibly leading to a bad least squares fitting.
A similar effect is observed in Fig. 18 for the plane wave method. In
this case there is another detrimental effect: as 0 gets away from 0 the
mean incidence angle of the 0⋜ plane wave increases and the reflected
wave is directed away from the aperture. Additionally, Fig. 17 shows
that the plane wave method, as with CYL1, starts to fail for larger 70
values. To sum up, the result is that the plane wave method has a
limited range of application. As in the plane surface case, it might be
useful in some case where no large deviations are expected from a PLO
inside the working range. At last, it is observed in Figs. 17 and 18 the
systematic error in the z coordinate common to all the methods and
test specimens analyzed in this work, which, as mentioned before, is
a problem inherent to TOF measurements. Furthermore, these kind of
constant small displacements in a single direction do not have a great
impact in image quality, as they act essentially as a common offset in
the TOF estimation of all elements.

4.1.3. TFM imaging with the estimated PLO
CYL1 test specimen has 3 bottom-drilled holes in its xz plane

(Fig. 19.a), having 3, 6, and 9 mm depth. In this section we present
CYL1 TFM images (Fig. 19 b to e) computed using the PLO estimated
with the pulse–echo method. Four D-scans are presented, correspond-
ing to four different PLOs taken from the experiments described in
Section 3. Fig. 20 shows a 3D view of the four PLOs.

Fig. 17. CYL2 Exp1 results. The abscissas corresponds to the nominal 70 values, and
the ordinates to the fitted values. Nominal 10 is 4.5 mm (dashed line).

Fig. 18. CYL2 Exp2 results. The abscissas corresponds to the nominal 1 values, and
the ordinates to the fitted values. Nominal angles are 70 = 0⋜ and 71 = 0⋜.

We can observe in Figs. 19 b to e how the 3 holes are always clearly
imaged and their positions do not show significant differences, despite
the probe position is significantly changed between them. There are
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Fig. 19. CYL1 D-scan TFM images computed with the estimated PLO. The (⊲, 0, 1, 7⊲ , 70 , 71) values are shown above of each D-scan, in mm and degrees. (a) Schematic of CYL1
bottom-drilled holes (c)–(e) D scans corresponding to four different PLOs.

variations in the amplitudes of the indications, which are expected due
to the effects of angular sensitivity and refraction angles, both changing
when array elements move.

5. Discussion

The results presented in the previous section show that the pulse–
echo and pitch–catch methods achieve similar performances. Their
errors in the measurement of (x,y) coordinates have a less than 0.5 mm
average value and less than 0.1 mm standard deviation for the three
tested geometries. z coordinate presents a larger systematic error (about
0.5 mm in the worst case for the performed experiments), but z
displacements have negligible systematic error and 0.02 mm standard
deviation. Angular error have less than 1⋜ average and standard devi-
ation. These results are valid up to the 20⋜ maximum angle applied in
the experiments.

For FMC acquisition, the available signals allow the application
of both (pulse–echo and pitch–catch) methods. In this case, pulse–
echo is preferable due to its simpler calculations. However, for Phased
Array (PA) applications, surface estimation and imaging are done in
two sequential stages. Firstly a set of emissions is used for surface
estimation, and then focal laws can be computed for the imaging
emissions. In this case, a pitch–catch acquisition is faster than pulse–
echo, because significantly fewer emissions are needed (9 instead of

121 in our experiments). Nevertheless, in the case of complete re-
ceive aperture, more signals are needed (1089 instead of 121 for the
example), and calculations are more complex. Therefore, depending
on data transfer rates available and the degree of optimization in the
algorithm implementation, pulse–echo might result faster than pitch-
catch. Regarding the plane wave method, its application resulted more
restrictive than the other two, because it starts to fail as angles increase.
The method showed a good performance (similar to pulse–echo and
pitch-catch) up to 5⋜ angles. In this range a single plane wave emis-
sion is a good choice for PA applications, but again this depends on
the degree of optimization in the algorithm implementation, because
more mathematical operations are needed for the spherical mirror
model. Even so, for the concave surface case pulse–echo might be not
applicable.

The maximum working angle for the plane wave method can be
estimated as a function of the probe aperture and height relative to the
surface. This depends on the geometry and we derived the equation for
a plane surface in Appendix, where it is shown that for rotation around
either x or y axis, the maximum angle is approximately 3𝑄

1 degrees for
a width D aperture and height z.

Finally we will discuss how TFM images would be affected if PLO
is not measured, and instead a nominal 𝜑𝑂𝜍ℏ5𝐽 is used for TOF calcu-
lations. We will use CYL1 as example and suppose a situation in which
the probe is by set-up design nominally positioned with 𝜑𝑂𝜍ℏ5𝐽 =
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Fig. 20. 3D view of the 4 PLOs for which D-scans are shown in Fig. 19. The (⊲, 0, 1, 7⊲ , 70 , 71) values are shown above of each PLO, in mm and degrees.

(0, 0, 15, 0, 0, 0). Fig. 21 shows TFM D-scan images for two PLOs, using
the nominal PLO (Figs. 21.a and 21.c) and the PLO measured with the
pulse–echo method proposed (Figs. 21.b and 21.d). It is observed that
if no PLO correction is applied the images are significantly distorted.
However, the application of the purposed method achieves a clear im-
provement. The experiments presented were performed with a 3 MHz
probe. For higher frequencies, we would expect the same TOF errors
to have a greater impact on image distortion, and therefore, correcting
the PLO would become more important. Experimental testing of this
hypothesis is a potential subject for future work.

Finally, we will discuss how TFM images would be affected by posi-
tioning errors if PLO is not measured and, instead, a nominal 𝜑𝑂𝜍ℏ5𝐽 is
used for TOF calculations. We will use CYL1 as example, assuming that
the probe is located by design at 𝜑𝑂𝜍ℏ5𝐽 = (0, 0, 14.75, 0, 0, 0), but posi-
tioning errors are present. Two cases will be analyzed: A slight move-
ment below 1⋜ and 1 mm in all axis with 𝜑𝑂𝜍1 = (0, 0.99, 15.22, 0, 0.22,
0.47) and a larger misalignment with 𝜑𝑂𝜍2 = (0, 0.05, 15.23, 0,ε5.13,
ε9.86).

Fig. 21 shows TFM D-scan images for the two cases, using the
nominal PLO (Figs. 21.a and 21.c) and the PLO measured with the
proposed pulse–echo method (Figs. 21.b and 21.d). It is observed that
if no PLO correction is applied, the images are significantly distorted.
Even in the case of a small misalignment 𝜑𝑂𝜍1 the amplitude of the
defects is reduced, which would lead to missing some of them if a
detection threshold is applied. For larger position deviations like in
𝜑𝑂𝜍2, besides the amplitude reduction because of wrong focusing
delays, the image displacement can take defects out of the measuring
gates, or even out of the image region. Furthermore, the position of the
defects with regard to the global coordinate system will be wrong.

It is worth to remark that images 21.b and 21.d are obtained solely
from the received ultrasonic data, without requiring any external mean
for measuring or correcting the probe position. This is the principal
contribution of the proposed method.

The experiments in this work were performed with a 3 MHz probe.
For higher frequencies, we would expect the same PLO errors to have
a greater impact on the image quality, because the same time-shift
implies a larger misalignment with regard to the wavelength, leading to

a more destructive interference. Therefore, in principle, correcting the
PLO errors would become more necessary for higher frequency arrays.

With regard to the performance of the proposed method, we do
not foresee any degradation apart from that relative to working at
higher frequencies, like lower signal-to-noise-ratio or higher element
directivity. In fact, interface detection and PLO estimation would be
probably more precise using shorter pulses resultant from higher fre-
quency arrays. Experimental testing of this hypothesis is a potential
subject for future work.

6. Conclusions

In this work we have presented some methods for 2D array surface
detection and estimation of the probe location and orientation. In
particular, the methods developed are applicable to the immersion
testing of components with plane, cylindrical or spherical surfaces.
These elementary surfaces are very common in industrial and structural
components for which 3D ultrasound imaging with 2D arrays can
provide a solution for some problems associated with linear arrays,
such as low resolution in the passive direction and misalignment which
refract the beam out of the image plane.

The developed methods use three types of acquisitions: pulse–echo,
pitch–catch and plane wave. They are based in surface echo time of
flight measurements and its fitting by a forward model.

We have shown experiments with the three types of geometry con-
cluding that the pulse–echo and pitch–catch methods perform similarly,
with (x,y) coordinate errors having a less than 0.5 mm average value
and less than 0.1 mm standard deviation. z coordinate presents a larger
systematic error (about 0.5 mm in the worst case for the performed
experiments) while the z displacements show negligible systematic
error and 0.02 mm standard deviation. Angular errors have less than
1⋜ average and standard deviation.

On the other hand the plane wave method, despite having a faster
acquisition time (single emission), has shown to have a limited angular
range of application, and slightly larger errors.

Moreover, a 3D TFM imaging example was shown for a cylin-
drical component, in which three bottom drilled holes are correctly
detected for wide a range of PLOs, using the automatic surface and
PLO detection proposed methods.
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Fig. 21. Examples showing the effect of using an incorrect PLO for image computation. The PLO used in each case is indicated above each image, in mm and degrees. (a) and
(c) A nominal PLO is used (no correction), (b) and (d) The PLO measured by the pulse–echo method proposed is used.
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Appendix. Estimation of the maximum working angle for the
plane wave method

In this section we derive a method for estimation of the plane wave
method maximum working angle. The derivation is done for the plane
surface case, considering for simplicity a rotation only about the y-axis.
For a cylindrical surface the equation might be used in an tentative
way if radius is not too small relative to the probe aperture. Fig. 22

Fig. 22. Schematic for the estimation of the maximum working angle for the plane
wave method.

shows a 2D section where the reflected plane wave is plotted as a
light green region. The probe has aperture D in the x direction and
its center is at height z. The part of the aperture highlighted in green
and starting at point B is where plane wave energy is received. As
this part decreases the plane wave model will start to fail. Thus, we
postulate that the working range corresponds to 𝑅⊲ < 𝑆𝑄2 where 𝑆 will
be empirically chosen and is such that ε1 < 𝑆 < 1. Between A and
B some energy is received from side lobes, but it does not propagate
as a plane wavefront. Point B is found as the intersection of the probe
aperture with the reflected ray (red line in Fig. 22) from point A. The
resulting equation is:

𝑅⊲ =
⦆

21 sin(7) ε 𝑄
2

]

(

cos(7)(1 ε tan(7)2)ε1
)

(36)
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Up to first order in 7 Eq. (36) can be approximated as:

𝑅⊲ =
⦆

217 ε 𝑄
2

]

(37)

Therefore, the maximum angle is:

7𝐽𝐾⊲ = (1 ε 𝑆) 𝑄41 (38)

To chose a value for 𝑆 we look at Fig. 12, where we can observe
that 7𝐽𝐾⊲ ς 5⋜ for every tested z value. If we replace the z average value
(22.5 mm) and the 10 mm probe aperture in (37), we get 𝑆 ς 0.8. Thus,
7𝐽𝐾⊲ in degrees is given by:

7𝐽𝐾⊲ ς 3𝑄
1

(39)

The Eq. (39) is a rough semi-empirical approximation that should
be used only in a orientative way.
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